Design of Thymidine Analogues Targeting Thymidilate Kinase of Mycobacterium tuberculosis
نویسندگان
چکیده
We design here new nanomolar antituberculotics, inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt), by means of structure-based molecular design. 3D models of TMPKmt-inhibitor complexes have been prepared from the crystal structure of TMPKmt cocrystallized with the natural substrate deoxythymidine monophosphate (dTMP) (1GSI) for a training set of 15 thymidine analogues (TMDs) with known activity to prepare a QSAR model of interaction establishing a correlation between the free energy of complexation and the biological activity. Subsequent validation of the predictability of the model has been performed with a 3D QSAR pharmacophore generation. The structural information derived from the model served to design new subnanomolar thymidine analogues. From molecular modeling investigations, the agreement between free energy of complexation (ΔΔG com) and K i values explains 94% of the TMPKmt inhibition (pK i = -0.2924ΔΔG com + 3.234; R (2) = 0.94) by variation of the computed ΔΔG com and 92% for the pharmacophore (PH4) model (pK i = 1.0206 × pK i (pred) - 0.0832, R (2) = 0.92). The analysis of contributions from active site residues suggested substitution at the 5-position of pyrimidine ring and various groups at the 5'-position of the ribose. The best inhibitor reached a predicted K i of 0.155 nM. The computational approach through the combined use of molecular modeling and PH4 pharmacophore is helpful in targeted drug design, providing valuable information for the synthesis and prediction of activity of novel antituberculotic agents.
منابع مشابه
Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.
Thymidine monophosphate kinase of Mycobacterium tuberculosis (TMPKmt) represents an attractive target for selectively blocking bacterial DNA synthesis. Hereby, we report on the discovery of a novel class of bicyclic nucleosides (10 and 11) and one dinucleoside (12), belonging to the most selective inhibitors of TMPKmt discovered so far.
متن کاملComparative study of purine and pyrimidine nucleoside analogues acting on the thymidylate kinases of Mycobacterium tuberculosis and of humans.
Thymidine monophosphate kinase (TMPK) from Mycobacterium tuberculosis (TMPKmt) is an attractive target for the design of specific inhibitors. This fact is the result of its key role in the thymidine pathway and of unique structural features in the active site observed by X-ray crystallography, especially in comparison to its human counterpart (TMPKh). Different 5-modified thymidine derivatives,...
متن کاملSynthesis and Evaluation of α-Thymidine Analogues as Novel Antimalarials
Plasmodium falciparum thymidylate kinase (PfTMPK) is a key enzyme in pyrimidine nucleotide biosynthesis. 3-Trifluoromethyl-4-chloro-phenyl-urea-α-thymidine has been reported as an inhibitor of Mycobacterium tuberculosis TMPK (MtTMPK). Starting from this point, we designed, synthesized and evaluated a number of thymidine analogues as antimalarials. Both 5'-urea-α- and β-thymidine derivatives wer...
متن کامل3'-C-branched-chain-substituted nucleosides and nucleotides as potent inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.
Thymidine monophosphate kinase (TMPK) of Mycobacterium tuberculosis (TMPKmt) represents an attractive target for blocking the bacterial DNA synthesis. In an attempt to find high-affinity inhibitors of TMPKmt, a cavity in the enzyme at the 3'-position was explored via the introduction of various substituents at the 3'-position of the thymidine monophosphate (dTMP) scaffold. Various 3'-C-branched...
متن کاملEnzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism.
The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013